MIMO Wiretap Channel with ISI Heterogeneity– Achieving Secure DoF with no CSI

نویسندگان

  • Jean de Dieu Mutangana
  • Deepak Kumar
  • Ravi Tandon
چکیده

We consider the multiple-input multiple-output (MIMO) wiretap channel with intersymbol interference (ISI) in which a transmitter (Alice) wishes to securely communicate with a receiver (Bob) in presence of an eavesdropper (Eve). We focus on the practically relevant setting in which there is no channel state information (CSI) at Alice about either of the channels to Bob or Eve, except statistical information about the ISI channels (i.e., Alice only knows the effective number of ISI taps). The key contribution of this work is to show that even with no CSI at Alice, positive secure degrees of freedom (SDoF) are achievable by carefully exploiting a) the heterogeneity of the ISI links to Bob and Eve, and b) the relative number of antennas at all the three terminals. To this end, we propose a novel achievable scheme that carefully mixes information and artificial noise symbols in order to exploit ISI heterogeneity to achieve positive SDoF. To the best of our knowledge, this is the first work to explore the idea of exploiting ISI channel length heterogeneity to achieve positive SDoF for the MIMO wiretap channel with no CSI at the legitimate transmitter.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MIMO Wiretap Channels with Arbitrarily Varying Eavesdropper Channel States

In this work, a class of information theoretic secrecy problems is addressed where the eavesdropper channel states are completely unknown to the legitimate parties. In particular, MIMO wiretap channel models are considered where the channel of the eavesdropper is arbitrarily varying over time. Assuming that the number of antennas of the eavesdropper is limited, the secrecy rate of the MIMO wire...

متن کامل

Almost universal codes for MIMO wiretap channels

Despite several works on secrecy coding for fading and MIMO wiretap channels from an error probability perspective, the construction of information theoretically secure codes over such channels remains as an open problem. In this paper, we consider a fading wiretap channel model where the transmitter has only partial statistical channel state information. We extend the flatness factor criterion...

متن کامل

On Interference Networks with Feedback and Delayed CSI

The degrees of freedom (DoF) region of the two-user MIMO interference channel (IC) is completely characterized in the presence of noiseless channel output feedback from each receiver to its respective transmitter and with the assumption of delayed channel state information (CSI) at the transmitters. It is shown that having output feedback and delayed CSI at the transmitters can strictly enlarge...

متن کامل

Key Agreement over Wiretap Models with Non-Causal Side Information

The security of information is an indispensable element of a communication system when transmitted signals are vulnerable to eavesdropping. This issue is a challenging problem in a wireless network as propagated signals can be easily captured by unauthorized receivers, and so achieving a perfectly secure communication is a desire in such a wiretap channel. On the other hand, cryptographic algor...

متن کامل

Securing the MIMO Wiretap Channel with Polar Codes and Encryption

Polar codes have been proven to be capacity achieving for any binary-input discrete memoryless channel, while at the same time they can reassure secure and reliable transmission over the single-input single-output wireless channel. However, the use of polar codes to secure multiple-antenna transmission and reception has not yet been reported in the open literature. In this paper, we assume a mu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017